SDN-Assisted Adaptive Streaming Framework for
Tile-Based Immersive Content Using MPEG-DASH

Shuai Zhao, Deep Medhi
Department of Computer Science & Electrical Engineering
University of Missouri—Kansas City, USA
{Shuai.Zhao, DMedhi} @umkc.edu

Abstract—Video streaming over the internet for new 3D im-
mersive media such as Virtual Reality and 360-degree videos are
drawing great attentions from both consumers and researchers in
recent years. One of the biggest challenges in streaming such 3D
media is the high bandwidth demands. While traditional 2D video
streaming is still dominating network peak traffic, new inventions
are accelerating the adoptions of immersive contents and devices.
A new Tile-based video is introduced in both video codec and
streaming layer to reduce the transferred media size. Dynamic
adaptive streaming over HTTP is becoming one of the de facto
effective adaptive streaming approaches that can fully utilize
the existing physical IP network infrastructure. In this paper,
we propose a tile-based streaming framework using software-
defined networking. By prioritizing streaming flows based on the
region of interests, our approach can improve user’s quality of
experience (QoE).

Index Terms—MPEG-DASH, Spatial Relationship Descrip-
tion; Software-Defined Networking; DASH Streaming; Immersive
VR/360

I. INTRODUCTION

The public interest of immersive devices such as head-
mounted displays (HMD) for Virtual Reality (VR), 360-
degree video cameras for capturing immersive contents and
3D playback support from the commercial website such as
YouTube are drawing great attentions from both consumers
and researchers. Compare with regular 2D flat video contents,
the 360 VR videos are extremely bandwidth intensive espe-
cially with the 4K/8K video resolution being widely accepted
as a functional minimum resolution for current HMDs, while
8K or higher is desired. Therefore, a major challenge is how to
efficiently transmit these bulky 360 VR videos to bandwidth-
constrained wireless VR HMDs at acceptable quality levels
given their high bitrate requirements. Recommended VR/360-
degree video display aspect ratio from YouTube is 2:1 for
monoscopic or panoramic videos and 1:1 for stereoscopic
videos with a ratio of 2:1 per eye for better user QoE. The file
size is double w.r.t the original 2D videos. Figure 1 depicts
how video content size can grow with various resolution.

A recently proposed tile-based approach is attempting to
reduce the transfer size based on user’s region of interests
(ROIs). In a typical scenario for streaming VR/360 videos,
the user usually views only a portion of the video at a time,
called field-of-view (FoV). As a result, there is a huge waste
of bandwidth for streaming content to the client that is not

5000

BigBuckBunny NORWAY PATAGONIA

4000
3000
2000

VIDEO SIZE(MB)

1000

L I R O R
5% /\"‘v \9% ’&" u}_’

VIDEOQ RESOLUTION

R R
AX AP

Fig. 1. Video Content Size Comparison

visible to the user. By knowing the user ROIs, we can stream
it with high quality while minimizing the quality of the rest
of the video and thereby, saving the user bandwidth. In a
video tiling scenario, the video is partitioned to multiple tiles
and depending on the users viewable area, we stream the
overlapping tiles. Tiling has proven useful in domains such
as online video lectures and sports.

Dynamic adaptive streaming over HTTP (MPEG-
DASH) [1] was initially designed for efficient streaming of
2D flat videos. It has become one of the de facto effective
adaptive streaming approaches that can fully utilize the
existing physical IP network infrastructure. However, the
current IP network has the limitation of effective dynamic
bandwidth allocation, which can lead to suboptimal streaming
experience for immersive content consumers.

Software-defined Networking (SDN) is a relatively recent
networking paradigm that has been conceived to address
certain limiting of IP networking. With decoupled control and
forwarding layers, SDN can dynamically optimize network
flows traffic based on global network traffic information. It also
has a finer quality of service (QoS) control based on assigned
flow priorities. Our work aims to investigate how the future
immersive video streaming scheme can exploit SDN for better
QoE. Specifically, we propose an SDN-based approach to
design a tile-based VR/360 streaming platform using DASH.
Briefly, we make the following contributions:

1) We present the difference in immersive content stream-

ing between traditional- and SDN-based network.

2) We introduce an SDN-based framework to assist tile-
based immersive content streaming.

3) We quantify the benefits brought by our SDN approach
using network simulation. The results indicate that our
scheme can increase of user’s quality of experience.

The remaining of this paper is as follows. Relate work
is discussed in Section II. Tile-based streaming support for
MPEG-DASH is explained in Section III. We then give a
brief overview of background regarding SDN and proposed
a framework in Section IV. Section V describes our test
environment and experimental results. We conclude the paper
in Section VI.

II. RELATED WORK

With modern capturing systems for 4K or Ultra High
Definition (UHD) and 8K or ultra high definition television
(UHDTYV) video, new types of media experiences are possible
where end users have the possibility to choose their viewing
direction. Also with increased interest of immersive HMD de-
vices for VR/360 content playback, user’s viewing experience
suffers because of the present limitations in both of existing
network framework and video delivery methods.

A great deal of work has been done on both video encoder
and delivery methods to reduce transferred media size. Tiling,
in the video codec level such as the H.265/HEVC [2], [3]
refers to a spatial partitioning of a video where tiles correspond
to independently decodable video streams, which takes a
divide-conquer approach to encoding and can reduce video
content size by half. However, it is currently not widely
adopted compared with the H.264/AVC encoding method.

With a 2D flat video, a tiled video can be obtained from a
single video by partitioning each frame into multiple frames
of smaller resolution and by aggregating the smaller frames
coming from the same partition/region of the input frame into
a new video. Here, tiles are defined as a spatial segmentation
of the video content into a regular grid of individual videos.
Similar ideas are also being used for creating tile-based
VR/360 contents [4]-[9].

MPEG-DASH is one of de facto effective adaptive stream-
ing approaches that can fully utilize the existing physical IP
network infrastructure. It supports the tiling scheme in the
Media Presentation Description (MPD) file [10], [11]. By
specifying spatial relationship description (SRD) in the DASH
MPD file, the client can fetch video segments based on current
ROIs such as applications in [12]-[15].New streaming archi-
tectures is proposed in [16] to provide an efficient streaming
experience. However, such experiments have been conducted
using the existing IP network architecture.

Related research such as improving the quality of experience
for streaming tile-based videos are also being investigated
in [3], [5], [17], [18] using available dataset in [19]. Our
work focus on exploring new network traffic engineering using
SDN. Our work is the first to exploit how SDN can be used
in such immersive streaming scenarios. With new MPEG-
I (ISO/IEC 23090) standard on the way and 5G networks’

advancing, our quantified testing result shows that SDN can be
quite beneficial to boost the development of such technologies.

1II. MPEG-DASH TILE-BASED STREAMING SUPPORT
A. Daynmaic Adaptive Streaming Over HITP (DASH)

The main concept behind MPEG-DASH (ISO/IEC 23009-
1) is shown in Fig. 2 [20]. A Media Presentation Description
(MPD) file is stored on the server and is fed to the client
player at the start of video viewing. The MPD file describes
how a video is segmented with different video and audio
adaptation sets and depicts the metadata of video segments
such as segment durations, video/audio codec, bitrate, video
resolutions, and how segments are stored indicated by segment
reference schemes.

Media Presentation

on HTTP Server DASH client

DASH Control
Engine.

on-time HTTP
requests to
segments

‘Media|Presentation
Description

Resources located|

by HTTP-URLS' Media Engines

@ in MPEG-DASH's scope

Fig. 2. MPEG-DASH system overview [20]

On the client side, the media player first fetches the MPD
file to learn the URLs of all video segments. Thus, the
available video segments from a video server can be fetched
through HTTP/GET requests.

B. MPEG-DASH Spatial Relationship Description

To make a tiled video, one can resort to either multiple
source camera setup, or to partition a single video into
multiple frames of smaller resolution. Here, tiles are defined
as a spatial segmentation of the video content into a reg-
ular grid of independent videos. In addition to supporting
segmented video streaming, the DASH standard also allows
associating non-timed related information to MPD elements.
One of such syntax calls Spatial Relationship Description
(SRD) to represent spatial relation for various parts of the
same scene. In SRD, the relationship is represented using a
scheme URI (@schemeldUri attribute) and a value (@value
attribute). In the value field, one can specify how video tiles
are spatially allocated. Figure 3 depicts a tile space for value
= (0,0,0,1,1,3,3). This is a 3 x 3 tiled coordination with
tile’s height and length equaling 1. Starting from the lower
left corner, tiles’ coordinates are numbered.

C. Region of Interests (ROIs) vs Video Tiles

When viewing immersive contents, the ROIs are the current
viewport or the viewer’s focus. For efficient streaming expe-
rience, ideally, one ROI is covered by just one or less than

-
020 021 022
010 011 012
P 001 002

Fig. 3. DASH SRD coordinate example (3 x 3 tiles)

one video tile, which can reduce data size by streaming lower
bitrate for non-ROIs tiles and increase, otherwise. However, in
the real world use case, a user’s ROI falls more like Figure 4,
which shows a possible ROI locations for a 3 x 3 tiled scheme.
In such scenarios, it is better for tiles with the number in [
010, 020, 011, 021] to get higher bitrates to increase the view
quality while the rest of the tiles can be transmitted with lower
bitrates. Simply by doing such assessments, the transferred
data size can be cut by half with increased QoE significantly.

Fig. 4. Tile-based video playback example [8]

On the other hand, the current immersive contents are
streamed either by downloading the whole content into
player’s devices or without any optimization with the user’s
ROIs. Instead, significant bandwidths are wasted while trans-
ferring high bitrate segments that is not necessary. Also, the
current [P network does not fully support multipath traffic
loading balancing and cannot dynamically adapt network flows
based on real-time network information, which can lead to sub-
optimal user’s quality of experience and waste of bandwidth.
Especially, with the humongous immersive media’s creation,
new approach are investigated in the next section to explore
how SDN can be utilized in streaming immersive media.

IV. SDN FOR TILE-BASED DASH STREAMING
o b ML B B [0 o o

@
R
OpenFlow

; Protocols

witch MAC
Flow Table ﬁm t:c

Data Flow

Physcial
Connection
Physcial
Forwarding
Devices

Fig. 5. Software-Defined Network Architecture

A. Background Overview on Software-Defined Networking

Software-Defined Networking provides a dynamic, man-
ageable and cost-effective platform for making it an impor-
tant platform for high-bandwidth, dynamic nature of today’s
network applications. Fig. 5 shows the SDN architecture. It
decouples the control and data forwarding layers and provides
the programming interface for the underlying forwarding de-
vices as well as the upper application layer. The SouthBound
and NorthBound APIs are provided as communication chan-
nels between the SDN layers. A typical SDN architecture
includes two main components: an SDN controller and a traffic
forwarding protocol using the forwarding devices. An SDN
controller is a software application that manages application
flows to enable dynamic and controllable networking environ-
ment. SouthBound communication between SDN controllers
and forwarding devices can be accomplished using Open-
Flow [21] that allows servers to instruct forwarding devices
where to send packets.

B. SDN-Assisted Adaptive Streaming Framework for Tile-
Based Contents Using DASH

Network control and Monitor DASH Traffic Control

Traffic Flow
Topology || Shortest ! Server SRD
[Discover][Path](Momtor]{ReRout; [Acess Parser

[Core SDN Controller Layer]

§

{ OpenFlow Compatible ’

Devices

Fig. 6. SDN DASH Experimental Architecture

In this section, we present our proposed SDN-assisted
platform design and implementation. Figure 6 depicts the
abstract function design for each SDN layers, which includes
the SDN control and Application layer.

1) SDN Controller Layer: In the control layer, essential
network function is implemented for both physical layer
packet forwarding and network layer module in Open System
Interconnection (OSI ISO/IEC 7498-1) model. In the packet
forwarding module, we apply the network primary forwarding
functions including the link layer discovery protocol (LLDP)
in the physical network layer. The implementation is based
on OpenFlow-compatible forwarding devices. In the network
layer, we implemented the forwarding function for the Internet
Control Message Protocol (ICMP) messages, which is the key
mechanism used to give feedback on network problems that
could prevent packet delivery.

Due to the flexibility provided by the SDN framework, we
also addressed a new physical layer flooding avoidance mech-
anism such as for the address resolution protocol (ARP). In a
traditional IP network, variations of spanning tree protocols
(STP) are widely used to build a loop-free topology. The
configuration of such an STP protocol can be cumbersome

and complicated based on the used forwarding devices. We
designed and implemented an ARP resolver algorithm that
offers smooth ARP package flooding, instead of using a costly
STP protocol as would be the case in a traditional IP network
environment. It also takes care of ARP cache expiration issues
by avoiding to send additional ICMP messages to get an
updated ARP entry.

Above the network transport layer, we implemented TCP
and UDP packet forwarding functions for application-aware
networking. Based on the application layer’s port number
and protocol type, it will forward packets accordingly. In the
traffic monitor module, we implemented lightweight REST-
API services to proactively fetch global network informa-
tion such as port traffic for each forwarding device, flow
installation/modification, and traffic details in a managed time
interval. The REST-APIs are designed to be lightweight with-
out introducing extra overhead for the SDN controller. One
Apache web server collects the pulled results from the REST-
APIs and aggregates traffic details to provide any traffic alerts
and Traffic Engineering (TE) recommendations.

2) Application layer: In the network control and monitor-
ing layer, the global network topology is discovered where
we take an adaptive traffic engineering approach by feeding
into a shortest path algorithm module to calculate a path
for each pair of network node/hosts on an on-demand basis.
The traffic monitor component using REST-APIs’ services
deployed at the core SDN controller layer proactively pulls
network traffic information from the network. If there is any
pre-defined traffic priority violation, a traffic reroutes using
flow reroute component might happen. From the beginning,
for ARP messages for a network request such as Ping, SSH,
or other applications, it first looks at the flow table and passes
the traffic if there is a current matching flow or checks if it is
a ARP broadcasting message otherwise.

Port number based application recognition feature is imple-
mented (such as port 80 is by default for the Apache Web
Service). In our controlled network, the port number can be
managed/changed via a separate configuration file that is read
by our SDN controller. With regards to DASH streaming appli-
cations, web server and DASH client control components are
implemented to instruct how to install flows over forwarding
devices. The modularization of various components provided
by different SDN controllers helps the network administrator
to control them individually in a manageable way.

The SRD parser module can parse the MPD file and extract
the tile coordination based on user’s ROI change. Shortest path
module can calculate in real-time for all shortest paths between
each pair of nodes based on existing network conditions and
topology changes. In our test scenarios, higher priority tiles are
rerouted using flow reroute module to the non-bottle-necked
path to achieve better bandwidth utilization.

V. EXPERIMENT ENVIROMENT AND PERFORMANCE
EVALUATION

In this section, we conduct our test environment setup
and show our result based on various number of ROIs. For

comparison, we first conduct bitrate tracing using a traditional
network and then switch to our proposed SDN network. By
showing the increased bitrate and buffer size for user’s ROI,
it shows the benefits of our proposed framework.

A. Network Topology

Mininet is a well known SDN emulator [22]. The topology
is as shown in Fig.6 that is setup with 10 Mbps link bandwidth
and 2 ms delay. We set up a network topology as illustrated
in Fig. 7. We use Openvswitch (OVS v2.3.1) [23] as our
forwarding devices. One DASH Apache web server and DASH
client were deployed. Each connected link has default 10 Mbps
bandwidth allocation. For the implementation of SDN, we
used Ryu [24] and OpenFlow v1.3 as southbound APIs.

MPD With srd url scheme

/ ovS1 \
R
User-X
ovs:2 / OVS-4

e’ 8

Fig. 7. Mininet SDN topology setup

snd{D,0,0, h,w,m,n}
srd{D,0.1, h.wem,n}

srdifm.n, hawman) | DASH Server

B. Video Dataset And Media Player

We use MPEG-DASH encoded video datasets to evaluate
our models. To test the efficiency of our model, we selected
different types of DASH datasets (Table. I) ensuring that each
dataset has variations in encoding details.

TABLE I
MPEG-DASH VIDEO DATASET CHARACTERISTICS
Name Codec Source Quality Genre
BigBuck Bunny | H.264/AVC 1080p Animation

AStream Media player [25] used in [26] is a python based
command line tool. It is an emulated video player, which
could be used to evaluate the performance of the DASH
bitrate adaptation schemes. It can request segments from any
multimedia server using MPD file provided to it during the
start of the video streaming session. It typical does not provide
any GUI for the user to watch the video.

During the video playback, the media player provides logs
like Buffer logs and Playback Logs. Buffer logs provide
information about Epoch time, Current playback time, current
buffer size, current playback state. Playback logs provide
information about epoch time, playback time, segment number,
segment size, playback bitrate, segment duration and weighted
harmonic mean average download bitrate.

C. SDN Traffic Engineering for ROI(s) Traffic Optimization

In this section, we evaluate user’s QoE based given ROI bi-
trates and buffer size. Figure 8 shows that two different ROI re-
gions on a given 2.X 2 tile-based video segments. The MPEG-
DASH SRD represents the spatial locations, such as tile #12

is represented by SRD syntax value field (1,2,1,1,2,2). In
our test scenario, ROI-A is covered only by tile #12, while
ROI-B is covered by both tile #11 and #12. The number of
tiles covering the specific ROI(s) is the number of segments
that user’s focus at a specific time. At the specific time ¢, the
user will change its ROI, such as from ROI-A to ROI-A’ and
from ROI-B to ROI-B’. We track the segment bitrate changes
for each tile and evaluate how proposed SDN framework
can adaptively optimize user’s QoE by varying the segments’
bitrate based on ROIs’ coordination and movement.

10 1% § ROLA
..'/
o1 PARYS ROIB

Fig. 8. ROI movement for a 2X?2 tile-based video segments

1) Benchmark with Non-SDN Deployment: To establish
the benchmark for comparison purpose, streaming over the
traditional network is conducted first. Without any traffic
engineering to optimize ROI’s bitrate, all the tiles are stream-
ing over one single link. Figure 9(a) and 9(e) depict the
bitrate and buffer information for each tile flow. The traffic
pattern displays a typical TCP bandwidth allocations among
all traffic. The average downloaded bitrate for each tile is
[0.5,0.4,0.4,0.3], with an overall average bitrate of 0.4 Mbps.
The average buffer size is [6.7,6.5,6.5,5.7], with an overall
average buffer of 6.3 units.

2) ROI Bitrate Optimization With SDN Deployed: In this
section, we first assume viewer’s ROI is on the tile #12, shown
in Figure 8. The SDN controller’s SRD parser module parses
the feedback from the viewer and installs flows on the path
[ovs-2, ovs-3, ovs3-4] in Figure 7 for that particular flow.
The rest of tiles stayed with the original path [ovs-2, ovs-
1, ovs-4]. Figure 9(b) shows that the bitrate rate increases
after client’s initial setup, which is around ten segments. The
average downloaded bitrate for each tile is [0.4,0.4,0.4,2.0],
with an overall average bitrate of 0.8 Mbps. The highest
bitrate 1.93 is for tile #12, which increases viewer’s quality of
experience by increasing the bitrate for his/her ROI. Average
buffer size in Figure 9(f) is [6.2,6.2,6.2,6.7], with an overall
average buffer of 6.3 units. Even though the average buffer
is approximately equal to the previous test case, the higher
buffer size for ROI tile #12 is increased by 1 buffer unit.

Then we assume viewer’s ROI is covered by tile #12 and
#11.In this case, ROI and Non-ROI tiles are split equally by
two paths. Figure 9(c) shows the average bitrate for ROI tiles’
average bitrate [0.7,0.9], with an overall average bitrate of 0.8
Mbps. The Average buffer size in Figure 9(g) is [7.7, 7.7], with
an overall average buffer of 7.7 units. In both metrics, they
are better than cases with Non-SDN deployed.

3) ROI Switchover with SDN Deployed: In this test case,
we adaptively change viewer’s ROI from ROI-A to another
ROI-A’ shown in Figure 8. The new ROI is still covered by

one tile. At the beginning of playback, segments are split by
two paths to increase initial ROI’s (#12) bitrate. We assume
that ROI switches to #01 right after finish streaming the 15-th
segment. Figure 9(d) shows the average downloaded bitrate for
each tile as [1.4, 0.4, 0.4, 0.9], with an overall average bitrate of
0.8 Mbps. The highest bitrate 1.41 Mbps is for new ROI with
tile #01. Previous ROI tile #12 has average bitrate 0.9 Mbps.
Average buffer size in Figure 9(h) is [5.9,6.2,6.1,6.1], with
an overall average buffer of 6.1 units. Slightly low buffer size
compared with one ROI optimization test case is negligible.

One-ROI
SwitchOver

Two-ROIs

I
I
One-ROI
—

Non-SDN
|

0 1 2 3 4 5 6 7 8

Highest Bitrate (Mbps) Buffer (Unit) M Average Bitrate (Mbps)

Fig. 10. QoE Improvement Comparison

In summary, from Figure 10, with the SDN-assisted frame-
work, user’s QoE can be increased by increasing average ROI’s
bitrate in both fixed ROI and ROI switchover cases. In our test
cases, the increased bitrate is around 100% and buffer size

6%.

VI. CONCLUSION AND FUTURE WORK

In this work, we first summarize the difference in im-
mersive content streaming between traditional- and SDN-
based network and introduce an SDN-based framework to
assist tile-based immersive content streaming. Our goal was
to develop an SDN-assisted framework to improve user QoEs
for streaming new 3D immersive media such as Virtual Reality
and 360-degree video using DASH without changing the
underlying design of DASH client itself. We proposed a
general application interface regarding a traffic flow alter-
ation mechanism. By optimizing bitrate for viewer’s ROI, our
proposed framework reduces the overall transferred data size
and increase bitrates for ROI to improve the overall viewing
experience. The presented framework outperformed compared
to the traditional end-client adaptation model. Our model is
evaluated and tested on a number of ROI schemes. In all
tests, we observed a significant ROI bitrate and buffer increase
which signifies improvement of QoE of video streaming.

As future work, we plan to integrate tile-based streaming
related issues such as a synchronization problem for different
tiles. Because each tile is essentially a separate TCP connec-
tion, each tile might have different playback timeline due to
package delay in a congested network. We are also planning to
include video traffic classification using data signature based
dynamic machine learning models and explore additional
traffic engineering (TE) methods as well as larger platforms

(a) BenchMark Bitrate With No SDN

(e) BenchMark Buffer With No SDN

Bitrate Mbps
P T AV
N

d

=

12345678 091011121314151617181920
Segment #

——Tile#01 —=Tile#11 —~Tile#10 —Tile#12 —*—Tile#01 —*—Tile#11 Tile#10

(b) SDN: One ROI Bitrate

Buffered Size

12345678 91011121314151617181920
Playback Time
Tile#11 Tile#10 —Tile#12

12345678 9101112131415161718192021

Tile#01 ——Tile#01 Tile#11 Tile#10 Tile#12

(f) SDN: One ROI Buffer

1234567 8 910111213141516171810

Tile#1

—

/

12345678 91011121314151617181920

© r N W & w

. o

13 5 7 9 11 13 15 17 19 21 23 25 27

——Tile #11 —=—Tile #12 ——Tile#01 —e—Tile#11 Tile#10 Tile#12

(¢) SDN: Two ROISs Bitrates (d) SDN: One ROI Adaptive Bitrate

13 5 7 9 11 13 15 17 19 21 23 25 27 12345678 9101112131415161718192021

——Tile #11 ~Tile #12 ——Tile#01 Tile#11 Tile#10 Tile#12

(g) SDN: Two ROIs Buffer (h) SDN: One ROI Adaptive

Fig. 9. Bitrate and Buffered Size for Both Non-SDN and SDN deployment

for our approach. New transport protocols such as WebSocket
can also be investigated for multiple ROIs switchover at the
same time in a single duplex network flow for better network
efficiency.

[1]

[2]

[6]

[7]

[10]

(11]

(12]

[13]

REFERENCES

T. Stockhammer, “Dynamic adaptive streaming over http—: standards
and design principles,” in Proc. of 2nd ACM conference on Multimedia
systems, 2011.

S. Liu, X. Xu, S. Lei, and K. Jou, “Overview of hevc extensions on
screen content coding,” APSIPA Transactions on Signal and Information
Processing, vol. 4, p. el0, 2015.

C. Concolato, J. Le Feuvre, F. Denoual, F. Maze, N. Ouedraogo, and
J. Taquet, “Adaptive streaming of hevc tiled videos using mpeg-dash,”
IEEE Transactions on Circuits and Systems for Video Technology, 2017.
M. Hosseini and V. Swaminathan, “Adaptive 360 vr video streaming
based on mpeg-dash srd,” in Multimedia (ISM), 2016 IEEE International
Symposium on. 1EEE, 2016, pp. 407-408.

F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video
delivery over cellular networks,” in Proceedings of the 5th Workshop on
All Things Cellular: Operations, Applications and Challenges. ACM,
2016, pp. 1-6.

A. TaghaviNasrabadi, A. Mahzari, J. D. Beshay, and R. Prakash,
“Adaptive 360-degree video streaming using layered video coding,” in
Virtual Reality (VR), 2017 IEEE. 1EEE, 2017, pp. 347-348.

S. Y. Lim, J. M. Seok, J. Seo, and T. G. Kim, “Tiled panoramic
video transmission system based on mpeg-dash,” in Information and
Communication Technology Convergence (ICTC), 2015 International
Conference on. 1EEE, 2015, pp. 719-721.

J. Le Feuvre and C. Concolato, “Tiled-based adaptive streaming using
mpeg-dash,” in Proceedings of the 7th International Conference on
Multimedia Systems. ACM, 2016, p. 41.

M. Hosseini, “View-aware tile-based adaptations in 360 virtual reality
video streaming,” in Virtual Reality (VR), 2017 IEEE. 1EEE, 2017, pp.
423-424.

O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual,
and S. Y. Lim, “Mpeg dash srd: spatial relationship description,” in
Proceedings of the 7th International Conference on Multimedia Systems.
ACM, 2016, p. 5.

T. Stockhammer, P. Fr6jdh, I. Sodagar, and S. Rhyu, “Information tech-
nologympeg systems technologiespart 6: Dynamic adaptive streaming
over http (dash),” ISO/IEC, MPEG Draft International Standard, 2011.
T. El-Ganainy and M. Hefeeda, “Streaming virtual reality content,” arXiv
preprint arXiv:1612.08350, 2016.

G. Cheung, Z. Liu, Z. Ma, and J. Z. Tan, “Multi-stream switch-
ing for interactive virtual reality video streaming,” arXiv preprint
arXiv:1703.09090, 2017.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]
(23]
[24]
[25]
[26]

A. Mavlankar, P. Agrawal, D. Pang, S. Halawa, N.-M. Cheung, and
B. Girod, “An interactive region-of-interest video streaming system for
online lecture viewing,” in Packet Video Workshop (PV), 2010 18th
International. 1EEE, 2010, pp. 64-71.

N. Q. M. Khiem, G. Ravindra, and W. T. Ooi, “Adaptive encoding
of zoomable video streams based on user access pattern,” Signal
Processing: Image Communication, vol. 27, no. 4, pp. 360-377, 2012.
M. Prins, O. Niamut, R. van Brandenburg, J.-F. Macq, P. Rondao Alface,
and N. Verzijp, “A hybrid architecture for delivery of panoramic video,”
in Proceedings of the 11th european conference on Interactive TV and
video. ACM, 2013, pp. 99-106.

H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan, “Mixing tile reso-
lutions in tiled video: A perceptual quality assessment,” in Proceedings
of Network and Operating System Support on Digital Audio and Video
Workshop. ACM, 2014, p. 25.

W. Min, H. Hannu, J. Pettersson, and Y. Timner, “Optimization of
fairness for http adaptive streaming with network assistance in Ite mobile
systems,” in Vehicular Technology Conference (VIC Fall), 2014 IEEE
80th. 1EEE, 2014, pp. 1-5.

J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Datasets for avc (h.
264) and hevc (h. 265) evaluation of dynamic adaptive streaming over
http (dash),” in Proceedings of the 7th International Conference on
Multimedia Systems. ACM, 2016, p. 51.

C. Mueller, “Mpeg-dash in a nutshell.” [Online]. Available: https:
//bitmovin.com/dynamic-adaptive-streaming- http-mpeg-dash/

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

“Mininet.” [Online]. Available: http://mininet.org/

O. VSWITCH, “Open vswitch,” 2013.

S. Ryu, “Framework,” 2013.

AStream. [Online]. Available: https://github.com/pari685/AStream

P. Juluri, V. Tamarapalli, and D. Medhi, “SARA: Segment aware rate
adaptation algorithm for dynamic adaptive streaming over http,” in 2015
IEEE International Conference on Communication Workshop (ICCW).

